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Abstract — The time-delayed phase-locked loop (PLL).
model predicts drastically different behavior not accounted
for in a conventional PLL model. Three results in particular
are identified. A critical gain exists for which the equilibrium
point becomes a limit cycle. An optimal gain exists that
minimizes the acquisition time of the PLL to an external
signal. Finally, changes in stability occur first at zero
frequency detuning for a given gain and time delay.
Verification of this behavior in a 1.5 GHz PLL with
reasonable circuit parameter values is demonstrated.

1. INTRODUCTION

Extensive analysis of phase-locked loop (PLL)
dynamics has been provided in texts and the research
literature [1]. Our motivation is to highlight fundamentally
different dynamical behavior in a PLL due to loop time
delay than is typically presented. The analysis of the PLL
is based on circuit parameters such gain, time delay, filter
response, and frequency detuning. The filter is assumed
low-pass. Other authors have demonstrated the circuit
instability regions that result from a time delayed PLL
model [2]. Our intention is to limit the analysis to the
conditions that result in changes to the stability of a high
frequency PLL.

Several PLL circuits were designed that displayed
strong spurious harmonics not related to oscillations
resulting from gain and phase margin instability. Instead,
insight into these oscillations led to an examination of
time-delay as an oscillation-inducing circuit parameter.

First, we examine a conventional PLL model.
Developing a method to approaching the non-linear
behavior of the conventional PLL model is helpful when
time delay is introduced into the model.

Fig.1 suggests the follow system of equations.

pr+y = a(‘[z)'( +X)
x =K, sin(¢)sin(¢,)
d): o, +K.y

M

The voltage-controlled  oscillator (VCO) is
characterized with a natural frequency ®wo and a tuning
sensitivity Kv. The phase output, ¢, represents the
argument of a periodic function. The mixer multiplies
two periodic signals with gain of Kp producing an error
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signal. This signal is low-pass filtered with pole and zero
time constants, Tp and 1z, and amplification, o.

Mixer: Agilent
IAM81008

VCO: ZComm

V602MEO8 l:
Buffer: National
CLC449| sTz+1
VGA: National| ™ stp+1
CLC522

J

Substituting for each equation and subtracting a
reference signal with constant phase results in the
following second-order differential equation.

T,A0+(1+7,Gsin Ap) Ad— G cos Ap = Aw

y

Fig. 1.  PLL topology

1 @
where G =5aKva, Ad=0-0¢,, and A0 =W, ~ @,

We will refer to G as the open-loop gain, A¢ as the phase
difference, and Aw as the frequency detuning. Note that

G has units of MHz.
a0l
)
X =x%;

(2) can be cast as
Tk, =—(1+1,Gsinx; ) x, + Geosx; +A®

£(X), X

3
The behavior of interest occurs near the equilibrium

points. These points are defined as satisfying f(X)=0.
Solving (3) gives an equilibrium point at

-1 (—A(D)
cos —_—
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Consequently, equilibrium points exist only where the
inverse cosine exists. This implies that the hold-in range,
the range of detuning that remains in phase lock, is 2G.
Calculating the open-loop gain from a measurement of the
hold-in range does not require breaking the feedback loop
and is often practical for studying loop behavior.

Studying the stability of the PLL is reduced to studying
the eigenvalues of (3) near the equilibrium points. These
eigenvalues determine the time constants of the response
of the PLL toward an equilibrium point. Fig. 2 relates the
time constants (via the eigenvalues) versus gain for
several filter zero values.
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Fig.2. Time constant versus gain for several filter zero
values.

A few features are notable. First, the time constant is
positive for all values of G and consequently all
equilibrium points are absolutely stable. This will not be
true in the time-delay situation.

Second, the graphs bifurcate below an optimal gain

value. The coalescence of the time constants above this
optimal gain minimizes the acquisition time. The filter
zero allows the time constant to decrease beyond the
bifurcating time constant value and, hence, the acquisition
time improves with gain. Without a filter zero, increasing
gain does not improve acquisition time. Given a particular
gain, the fastest acquisition occurs at a zero value for
which the eigenvalues bifurcates at smaller gains.

II. TME DELAY PLL MODEL

The PLL model can be modified to incorporate a lump
sum time delay between the mixer and the VCO. (2)
becomes

1,00+ A9 +7,GAY(t~T)sin Ad(t—T)

)
-GeosAd(t—T) = Aw

We want to express this as a system of equations as we
did in (3). This motivates introducing

X3(t)=x(t-T) x4(t)=%;(t-T) 6

Since true time delay is an infinite dimensional variable,
analyzing the exact equation is a challenge. One approach
is to approximate the Laplace transform of the time-
delayed signal. The Pade approximation allows us to
express the time delay as a transfer function [3]. The first
order Pade (1,1) approximation is

1
1-—sT
X3 (S) = e-ST ~ 2 s (7)
Xi(s) 14167
2

Using this relationship, the system of equations
becomes four-dimensional.

Xl = X2
Toky =—X; —T,GX, sinx3 + G eosx; +Aw

. 2
X3=}‘(xl'x3)"‘2 =X4 ®

2t
TyXy =-—F"-(x2 —X4)+X; +7,6x,sinx3 ~G cosx; —~A®

Two values of time delay are presented in Fig. 3. The
stability of the equilibrium point is qualitatively similar
for all zero frequencies. To simplify analysis, we assume
there is no zero. Comparing Fig. 2 and Fig. 3, the most
important features of the two time delay graphs are the
singularity and the non-monotonic behavior of the time
constant values.

400 M )
T=9ns
%00 1, = 80MHz
200 Af = OMHz
]
c
s v
2 o 10 20 30 © s0
3
[} 3 T
£
= T=09ns ]
f, = 80MHz
Af = OMHz
% % 100 150 200 250 30
Gain (MHz)
Fig.3. Time constant versus gain comparison for two time
delays.
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The singularity changes the stability of the equilibrium
point. Once the real part of any of the eigenvalues
becomes positive and, consequently, the time constant
becomes negative, the PLL will no longer lock at an
equilibrium point. The PLL locks instead in a limit cycle
to the injected signal. _

The relationship between gain and time delay is implicit
in comparing these plots; a factor of ten increase in the
time delay results in roughly a factor of ten decrease in the
zero crossing or critical gain.

Furthermore, the acquisition time of the PLL is
minimized at a particular gain for a given delay. The
optimal gain for fast acquisition is the gain that minimizes
the time constants. As seen in Fig. 3, this occurs for gains
of 5 and 10 MHz, respectively. Surprisingly, the large
change in time delay has little impact on this optimal gain.
From Fig. 2, the conventional PLL gives an upper bound
on the optimal gain at 20 MHz. Comparing Fig. 2 and
Fig. 3 demonstrates the similar time constant behavior for
gains below the optimal gain.
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Fig.4. Time constant versus frequency detuning comparison

for two gains.

Variation of frequency detuning results in a stable
equilibrium point for some values of detuning and limit
cycle for other values. Fig. 4 demonstrates the behavior
under these circumstances. First, for gains greater than the
critical gain illustrated in Fig. 3, some region of detuning
results in a limit cycle, as reflected by the negative time
constant value. Second, for zero frequency detuning (the
oscillators have the same natural frequencies) the time
constant is largest.

Three unique behaviors have been identified: 1) the
critical gain, 2) the optimal gain, and 3) zero detuning
instability. We have verified these three behaviors in a
1.5 GHz PLL.

II1. MEASUREMENT AND VERIFICATION OF PLL BEHAVIOR

The circuit consists of a mixer, buffer, variable gain
amplifier (VGA), and a VCO as in Fig. 1. The VGA
provides gain and natural frequency control, allowing
variation of G and Aw. The time delay results from the
intrinsic transit and charging times of the devices and the
layout topology. The loop was broken and the step signal
was applied to measure the time delay. While the delay
was expected to be about 7 nanoseconds, the measurement
was 9.0 nanoseconds. The filter pole is at 80 MHz. There
is no filter zero. These values are used in the predictions
of the previous section to facilitate direct comparison.

A. Critical Gain Behavior

According to Fig. 3, at the critical gain the time constant
changes sign. For higher gain, the loop still locks but the
equilibrium point becomes a limit cycle.

20 G =25 MHz
40
-80
80
e %00 1450 1500 1550 1600
g 0
. G 530 MHz
.40
60
-80
%00 1450 1500 750 1600
Frequency (MHz)
Fig. 5. Critical gain region frequency spectrum.

Verifying the critical gain consists of determining the
boundary between an absolutely stable locked state and a
locked state that displays a limit cycle. The frequency
spectrum of the VCO signal in Fig. 5 is the best indicator
of the bifurcation boundary. The spectrum demonstrates
the sidelobes resulting from the limit cycle behavior of the
equilibrium point. In the top spectrum, the spurious
harmonics are 60dB below the oscillator frequency. A
slight increase in gain results in harmonic components of
power on the order of the carrier as shown on the bottom.
The pull-in range is measured to estimate the gain.
Comparing with Fig. 3, the critical gain is between 25 and
30 MHz as predicted.

B. Optimal Gain Behavior

Time delay degrades the acquisition time of the PLL
with increasing gain. This result contradicts the
conventional model, which predicts gain will
monotonically improve acquisition time. Three time
domain responses demonstrate this degradation in Fig. 6.
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These measurements should be considered for qualitative
value since the initial conditions cannot be closely
controlled. An external pulse forces the PLL out of lock

initially. This condition results in the beat note response .

prior to the active low pulse in Fig. 6. After the pulse is
turned off, the system proceeds to lock.

Though the actual acquisition times differ from the
expected values in Fig. 3., the qualitative agreement is
more compelling than for the conventional model.
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Fig. 6. Acquisition times for increasing gain.

C. Frequency Detuning Instability

Fig. 4. illustrates changes in the stability of the system
with frequency detuning. To compare the circuit behavior
with the theoretical behavior for frequency detuning, the
phase plane is measured. Fig. 7 consists of four
measurements of the phase plane for different detuning
values. The axes correspond to the x variables of (8). The
largest limit cycle occurs for zero frequency detuning.
The arrows leading from 1 through 4 imply the continuity
of the limit cycle as it collapses to an equilibrium point for
maximal frequency detuning. Additionally the frequency
spectra for 1 and 4 are presented to relate the phase plane
behavior to a spectrum analyzer. The detuning variation
is symmetric as is expected from Fig 4.

Finally, note that the actual collapse of the limit cycle
occurs between 7 and 10 MHz. Fig 4. predicts this
collapse at 12 MHz.

Fig. 7.  Stability variations with frequency detuning. 1.
corresponds to 0 MHz detuning. 2) corresponds to 7 MHz
detuning. 3) corresponds to 10 MHz detuning. 4) corresponds to
29 MHz detuning.

IV. CONCLUSION

Inclusion of time delay in a PLL model predicts
instability unaccounted for in the conventional model.
Several important results of the bifurcating dynamics have
been identified. A critical gain exists above which the
oscillators will no longer lock with a time-independent
phase difference. An optimal gain exists that provides the
fastest possible acquisition time for the two oscillators.
Finally, a variation exists in the stability of an equilibrium
point with respect to frequency detuning. These dynamics
have been studied in a 1.5 GHz phase locked loop and
have been determined to closely agree to the first order
predicted behavior.
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