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Abstract - The time-delayed phase-locked loop (PLL). 
model predicts drastically different behavior not accounted 
for in a conventional PLL model. Three results in particular 
are identified. A critical gain exists for which the equilibrium 
point becomes a limit cycle. An optimal gain exists that 
minimizes the acquisition time of the PLL to an external 
signal. Finally, changes in stability occur first at zero 
frequency detuning for a given gain and time delay. 
Verification of this behavior in a 1.5 GEJz PLL with 
reasonable circuit parameter values is demonstrated. 

I. 1~0Du~0N 

Extensive analysis of phase-locked loop (PLL) 
dynamics has been provided in texts and the research 
literature [ 11. Our motivation is to highlight fundamentally 
different dynamical behavior in a PLL due to loop time 
delay than is typically presented. The analysis of the PLL 
is based on circuit parameters such gain, time delay, filter 
response, and frequency detuning. The filter is assumed 
low-pass. Other authors have demonstrated the circuit 
instability regions that result from a time delayed PLL 
model [2]. Our intention is to limit the analysis to the 
conditions that result in changes to the stability of a high 
frequency PLL. 

Several PLL circuits were designed that displayed 
strong spurious harmonics not related to oscillations 
resulting from gain and phase margin instability. Instead, 
insight into these oscillations led to an examination of 
time-delay as an oscillation-inducing circuit parameter. 

First, we examine a conventional PLL model. 
Developing a method to approaching the non-linear 
behavior of the conventional PLL model is helpful when 
time delay is introduced into the model. 

Fig. 1 suggests the follow system of equations. 

2,jl+y=a(Tt,i+x) 

x = K, sin($) (1) 

&=co, +K,y 

The voltage-controlled oscillator (VCO) is 
characterized with a natural frequency 00 and a tuning 
sensitivity Kv. The phase output, $, represents the 
argument of a periodic function. The mixer multiplies 
two periodic signals with gain of Kp producing an error 

signal. This signal is low-pass filtered with pole 
time constants, zp and ZZ, and amplification, a. 

and zero 
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Fig. 1. PLL topology 
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Substituting for each equation and subtracting a 
reference signal with constant phase results in the 
following second-order differential equation. 

z,A6+(1+z,GsinA$)A&-GcosA$=Ao 

whereG=iaK,K,, A$=$-$+, andAo=o,-q 
(2) 

We will refer to G as the open-loop gain, A$ as the phase 
difference, and Ao as the frequency detuning. Note that 
G has units of MHz. 

(2) can be cast as 

%=f(i), 51= 4 [I A, + 

t, = x2 (3) 
z,k, =-(1+fzGsinx,)x2 +Gcosx, +Aw 

The behavior of interest occurs near the equilibrium 
points. These points are defined as satisfying f (TI) = 0. 
Solving (3) gives an equilibrium point at 

z, = (4) 
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Consequently, equilibrium points exist only where the 
inverse cosine exists. This implies that the hold-in range, 
the range of detuning that remains in phase lock, is 2G. 
Calculating the open-loop gain from a measurement of the 
hold-in range does not require breaking the feedback loop 
and is often practical for studying loop behavior. 

Studying the stability of the PLL is reduced to studying 
the eigenvalues of (3) near the equilibrium points. These 
eigenvalues determine the time constants of the response 
of the PLL toward an equilibrium point. Fig. 2 relates the 
time constants (via the eigenvalues) versus gain for 
several filter zero values. 
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Fig. 2. Tie constant versus gain for several filter zero 
values. 

A few features are notable. First, the time constant is 
positive for all values of G and consequently all 
equilibrium points are absolutely stable. This will not be 
true in the time-delay situation. 

Second, the graphs bifurcate below an optimal gain 
value. The coalescence of the time constants above this 
optimal gain minimizes the acquisition time. The filter 
zero allows the time constant to decrease beyond the 
bifurcating time constant value and, hence, the acquisition 
time improves with gain. Without a filter zero, increasing 
gain does not improve acquisition time. Given a particular 
gain, the fastest acquisition occurs at a zero value for 
which the eigenvalues bifurcates at smaller gains. 

II. TIME DELAY PLL MODEL 

The PLL model can be modified to incorporate a lump 
sum time delay between the mixer and the. VCO. (2) 
becomes 

T,A++A$+z,GA$(t-T)sinA$(t-T) 

-GcosA$(t-T)=Ao 
(5) 

We want to express this as a system of equations as we 
did in (3). This motivates introducing 

x3(t)=x,(t-T) x4(t)=x2(t-T) (6) 

Since true time delay is an infinite dimensional variable, 
analyzing the exact equation is a challenge. One approach 
is to approximate the Laplace transform of the time- 
delayed signal. The Pade approximation allows us to 
express the time delay as a transfer function [3]. The first 
order Pade (1 ,l) approximation is 

X,(s) 

Xl(s)=e l+;sT 
(7) 

Using this relationship, the system of equations 
becomes four-dimensional. 

i, =x* 

‘tpi2 =-x2 -$Gx4 sinx3 +Gcosx, +ACB 

k3=T x1 2( -x3)-x2 =x4 

f 22, 
=px4 = T (x2 -x4)+x2 +r,Gx4sinx9 -GCOSX~ -Aw 

Two values of time delay are presented in Fig. 3. The 
stability of the equilibrium point is qualitatively similar 
for all zero frequencies. To simplify analysis, we assume 
there is no zero. Comparing Fig. 2 and Fig. 3, the most 
important features of the two time delay graphs are the 
singularity and the non-monotonic behavior of the time 
constant values. 
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Fig. 3. Time constant versus gain comparison for two time 
delays. 
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The singularity changes the stability of the equilibrium 
point. Once the real part of any of the eigenvalues 
becomes positive and, consequently, the time constant 
becomes negative, the PLL will no longer lock at an 
equilibrium point. The PLL locks instead in a limit cycle 
to the injected signal. 

The relationship between gain and time delay is implicit 
in comparing these plots; a factor of ten increase in the 
time delay results in roughly a factor of ten decrease in the 
zero crossing or critical gain. 

Furthermore, the acquisition time of the PLL is 
minimized at a particular gain for a given delay. The 
optimal gain for fast acquisition is the gain that minimizes 
the time constants. As seen in Fig. 3, this occurs for gains 
of 5 and 10 MHz, respectively. Surprisingly, the large 
change in time delay has little impact on this optimal gain. 
From Fig. 2, the conventional PLL gives an upper bound 
on the optimal gain at 20 MHz. Comparing Fig. 2 and 
Fig. 3 demonstrates the similar time constant behavior for 
gains below the optimal gain. 
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Fig. 4. Time constant versus frequency detuning comparison 
for two gains. 

Variation of frequency detuning results in a stable 
equilibrium point for some values of detuning and limit 
cycle for other values. Fig. 4 demonstrates the behavior 
under these circumstances. First, for gains greater than the 
critical gain illustrated in Fig. 3, some region of detuning 
results in a limit cycle, as reflected by the negative time 
constant value. Second, for zero frequency detuning (the 
oscillators have the same natural frequencies) the time 
constant is largest. 

Three unique behaviors have been identified: 1) the 
critical gain, 2) the optimal gain, and 3) zero detuning 
instability. We have verified these three behaviors in a 
1.5 GHz PLL. 

III. MEASUREMENT AND VERIFICATKIN OF PLL BEHAVIOR 

The circuit consists of a mixer, buffer, variable gain 
amplifier (VGA), and a VCO as in Fig. 1. The VGA 
provides gain and natural frequency control, allowing 
variation of G and Am. The time delay results from the 
intrinsic transit and charging times of the devices and the 
layout topology. The loop was broken and the step signal 
was applied to measure the time delay. While the delay 
was expected to be about 7 nanoseconds, the measurement 
was 9.0 nanoseconds. The filter pole is at 80 MHz. There 
is no filter zero. These values are used in the predictions 
of the previous section to facilitate direct comparison. 
A. Crifical Gain Behavior 

According to Fig. 3, at the critical gain the time constant 
changes sign. For higher gain, the loop still locks but the 
equilibrium point becomes a limit cycle. 
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Fig. 5. Critical gain region tiequency spectrum. 
Verifying the critical gain consists of determining the 

boundary between an absolutely stable locked state and a 
locked state that displays a limit cycle. The frequency 
spectrum of the VCO signal in Fig. 5 is the best indicator 
of the bifurcation boundary. The spectrum demonstrates 
the sidelobes resulting from the limit cycle behavior of the 
equilibrium point. In the top spectrum, the spurious 
harmonics are 60dB below the oscillator frequency. A 
slight increase in gain results in harmonic components of 
power on the order of the carrier as shown on the bottom. 
The pull-in range is measured to estimate the gain. 
Comparing with Fig. 3, the critical gain is between 25 and 
30 MHz as predicted. 

B. Optimal Gain Behavior 

Time delay degrades the acquisition time of the PLL 
with increasing gain. This result contradicts the 
conventional model, which predicts gain will 
monotonically improve acquisition time. Three time 
domain responses demonstrate this degradation in Fig. 6. 
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These measurements should be considered for qualitative 
value since the initial conditions cannot be closely 
controlled. An external pulse forces the PLL out of lock 
initially. This condition results in the beat note response 
prior to the active low pulse in Fig. 6. After the pulse is 
turned off, the system proceeds to lock. 

Though the actual acquisition times differ from the 
expected values in Fig. 3., the qualitative agreement is 
more compelling than for the conventional model. 
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Fig. 6. Acquisition times for increasing gain. 

C. Frequency Detuning Instability 

Fig. 4. illustrates changes in the stability of the system 
with frequency detuning. To compare the circuit behavior 
with the theoretical behavior for frequency detuning, the 
phase plane is measured. Fig. 7 consists of four 
measurements of the phase plane for different detuning 
values. The axes correspond to the x variables of (8). The 
largest limit cycle occurs for zero frequency detuning. 
The arrows leading from 1 through 4 imply the continuity 
of the limit cycle as it collapses to an equilibrium point for 
maximal frequency detuning. Additionally the frequency 
spectra for 1 and 4 are presented to relate the phase plane 
behavior to a spectrum analyzer. The detuning variation 
is symmetric as is expected from Fig 4. 

Finally, note that the actual collapse of the limit cycle 
occurs between 7 and 10 MHz. Fig 4. predicts this 
collapse at 12 MHz. 

.- / G=30MHz 

Fig. 7. Stability variations with frequency detuning. 1. 
corresponds to 0 MHz detuning. 2) corresponds to 7 MHz 
detuning. 3) corresponds to 10 MHz detuning. 4) corresponds to 
29 MHz detuning. 

IV. CONCLUSION 

Inclusion of time delay in a PLL model predicts 
instability unaccounted for in the conventional model. 
Several important results of the bifurcating dynamics have 
been identified. A critical gain exists above which the 
oscillators will no longer lock with a time-independent 
phase difference. An optimal gain exists that provides the 
fastest possible acquisition time for the two oscillators. 
Finally, a variation exists in the stability of an equilibrium 
point with respect to frequency detuning. These dynamics 
have been studied in a 1.5 GHz phase locked loop and 
have been determined to closely agree to the first order 
predicted behavior. 
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